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Abstract—This paper introduces DART, a general framework
for tracking articulated objects composed of rigid bodies con-
nected through a kinematic tree. DART covers a broad set of
objects encountered in indoor environments, including furniture
and tools, and human and robot bodies, hands and manipulators.
To achieve efficient and robust tracking, DART extends the
signed distance function representation to articulated objects
and takes full advantage of highly parallel GPU algorithms
for data association and pose optimization. We demonstrate the
capabilities of DART on different types of objects that have each
required dedicated tracking techniques in the past.

I. INTRODUCTION

The ability to accurately track the pose of objects in real
time is of fundamental importance to many areas of robotics.
Applications range from navigation to planning, manipulation
and human-robot interaction, all of which have received the
attention of researchers working within a state-space model-
based paradigm within both computer vision and robotics.
The class of objects that can be described as collections
of rigid bodies chained together through a kinematic tree is
quite broad, including furniture, tools, human bodies, human
hands, and robot manipulators. Tracking articulated bodies
from a single viewpoint and without instrumenting the object
of interest still presents a significant challenge where the single
viewpoint and occlusions, including self-occlusion, limit the
amount of information available for pose estimation. Noisy
sensor data and approximate object models pose additional
problems. Finally, the objects being tracked can be highly
dynamic and have many degrees of freedom, making real-time
tracking difficult.

Early articulated model-based tracking techniques relied on
tracking 2D features such as image edges on a CPU [8, 5].
Recently introduced depth cameras along with highly parallel
algorithms optimized for modern GPUs have enabled new
algorithms for tracking complex 3D objects in real time.
Examples include KinectFusion and related efforts for 3D
mapping [23, 16, 34], human body pose tracking [29, 35, 15],
articulated hand tracking [24, 19, 26]. These approaches were
developed for specific application domains and have not been
demonstrated or tested on multiple tracking applications. The
application-specific nature of these approaches enables their
authors to show excellent performance by taking advantage of
domain-specific features and constraints, but it also prevents
them from serving as general tools for tracking arbitrary
articulated objects. Techniques have also been developed to

Fig. 1: Articulated objects successfully tracked at frame-rate using
DART, without object-specific tuning of the algorithm: a human hand,
Rethink Robotics Baxter robot opening a box, and a full human body.

track fully non-rigid deformations of an underlying surface
template for both specific [21] and general [14, 20, 28] object
cases. However, the full generality of these models comes
at the cost of increased model complexity, and for many
objects that are well modelled as piecewise rigid bodies, such
overparameterized output obscures the utility of tracking the
articulated body state directly.

In this paper we present DART, a general framework for
tracking articulated models with formally defined kinematic
and geometric structure using standard depth sensors. DART
represents objects via an articulated version of the signed
distance function (SDF), which has been used to achieve very
robust and efficient results for online 3D mapping [23, 16, 34]
and for tracking rigid objects in six degrees of freedom
[10, 27, 22, 4, 3]. Our tracking framework uses a local gradient
based approach to find the pose of the model which best
explains the data points observed in a depth frame along with a
prior based on previous data. The objective function is trivially
parallelizable, and is optimized on a GPU, which allows us to
use all available data to achieve accurate tracking results in
real-time, even with models having as many as 48 degrees
of freedom. To use DART in a new domain, one need only
supply a model file specifying the relative locations of all the
frames of reference, the possible articulations of the frames,
and the geometry attached to each frame. Given this model,
the object can be tracked with no changes to the code. These
models can be designed manually, generated from a currently
available volumetric fusion method, or derived from CAD or
robot description models.

The main contributions of this paper are (1) a general
framework for highly efficient tracking of articulated objects,
(2) a generalization of signed distance functions (SDF) to
articulated objects, (3) a symmetric formulation of point set



registration that incorporates negative information into the
energy function, and (4) a demonstration of the framework
tracking a variety of different models.

This paper is organized as follows. After discussing related
work, we will introduce the DART framework in Section III.
Experimental results are described in Section IV followed by a
discussion of the limitations and possible extensions to DART
in Section V. We conclude in Section VI.

II. RELATED WORK

Existing approaches to articulated model tracking tend to
fall into one of three categories. Gradient-based methods,
the category to which our approach belongs, involve the
minimization of an objective function which is characterized
by having partial derivatives with respect to the pose vector.
These approaches are therefore able to take advantage of well-
studied optimization techniques that make use of derivative
information to incrementally improve an estimate of the opti-
mum. Implicit surfaces and gradient descent on ICP-like error
terms have proven successful in tracking rigid bodies, as by
Newcombe et al. [23], Sturm et al. [30], and Henry et al. [16].
Implicit surfaces have also been used for model-based tracking
of articulated models; Dewaele et al. [6] used an implicitly
defined model and an expectation maximization approach to
track human hands. Grest et al. [13] presented early work
on human body tracking from depth, but subsampled the
points and still did not reach real-time. Schulman et al. [28]
track fully deformable models with RGB-D cameras. They
use the aid of a state of the art physics simulator to reason
about configurations of deformable objects, but require fore-
ground/background segmentation as a preprocessing step and
only report results using either distinctively colored objects
or multiple cameras. They furthermore rely on downsampling
the input data in order to achieve tracking results at 10 Hz. In
contrast, our framework introduces articulated and symmetric
signed distance functions to solve the data association problem
robustly and efficiently, enabling real-time tracking using all
input data points. Another approach similar to ours is that
of Ganapathi et al. [12], which uses range data to track
articulated motion of human bodies by augmenting traditional
ICP with free space information. Our work differs by incor-
porating information about observed free space directly into
the energy function, rather than using constraint projection.
We also demonstrate the applicability of our approach to a
wider set of application domains and demonstrate how the
trivially parallelizable optimization can take advantage of GPU
acceleration. Finally, Ye and Yang [35] perform a gradient
based optimization over a rigged mesh model for human body
tracking, but again rely on subsampling of both the model and
observation point sets, and do not take free space information
into account.

Sampling-based methods, on the other hand, rely on ob-
jective functions that are cheap to evaluate, but have partial
derivatives which are either too expensive to compute or which
do not give reliable information about the direction of the
true minimum. For example, many articulated model tracking

approaches in this category utilize some form of silhouette
information, necessitating the use of indicator functions which
are discontinuous and therefore not globally differentiable.
Such methods thus often rely on inference techniques which
are less thoroughly studied and perhaps less theoretically jus-
tified, such as particle swarm optimization (PSO) as employed
by Oikonomidis et al. [24], Kyriazis and Argyros [19].

Finally, discriminative or appearance-based methods utilize
training sets and machine learning techniques to learn a direct
map from the features extracted from input images to specific
articulated part labels and poses. Discriminative approaches
have proven extremely successful for the problem of human
pose estimation [29, 31], and similar approaches have also
been applied to hand tracking [17]. While these methods can
be highly efficient and robust, they require a lot of data and
time to train recognition models for each new object. However,
these approaches could also be seen as complementary to
ours, as they are able to provide pose estimates with little
or no prior. A combination of discriminative and generative
approaches has been applied to articulated tracking, e.g. by
Ballan et al. [1], who used fingernail detectors to help constrain
a gradient descent optimization, by Ganapathi et al. [11], who
used a gradient-based optimizer in conjunction with body part
recognition for human body tracking, and by Qian et al. [26],
who combine PSO, a standard ICP formulation, and a hand-
designed finger detector to track human hands, thus straddling
all three categories.

While many of these existing techniques achieve excellent
results in their application domain, such as hand/object track-
ing [24, 19, 26], human pose tracking [29, 31, 11, 12, 35],
or deformable object tracking [28], none of them have been
demonstrated to work in several domains. In contrast, our
DART framework relies on a highly efficient representation
and optimization to operate under very general conditions,
thereby enabling it to track a wide variety of objects.

III. DART: DENSE ARTICULATED REAL-TIME TRACKING

We now present our tracking framework. While DART is
able to track multiple articulated objects moving in a scene,
we present the framework for a single object only, in order to
avoid overly complicated notation. The extension to multiple
objects is straightforward.

A. Model Representation

The models we track are defined as a set of rigid bodies
connected to each other in a kinematic tree. By convention,
we designate the root of the tree as frame 0. The root frame
is related to the camera frame of reference by the rigid
body transformation matrix T0,c = [R0,c|t0,c] ∈ SE3. Every
other frame in the kinematic tree is attached to some other
frame which is designated as its parent. The frame i (for
i 6= 0) is defined relative to its parent via the transform
Tparent(i),i(θ) ∈ SE3, which may be a function of any
subset of joint parameters θ (which collectively describe the
articulated pose of the entire model) together with any fixed
transformation defined relatively between the frames. The



(a) Voxelized hand
model

(b) Slice through
hand model

(c) Voxelized
Baxter model

(d) Slice through
Baxter model

(e) Voxelized
human model

(f) Slice through
human model

(g) Hand part
association

(h) Hand composite
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(i) Baxter part
association

(j) Baxter
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(k) Human part
association

(l) Human
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Fig. 2: Representation of articulated models in DART. A model specification is given in the form of a kinematic tree of joints connecting
rigid body geometric parts or segments. Each rigid part is voxelized, and a signed distance function is computed in the local coordinate
frame. (a),(c), and (e) show the bounding boxes of the rigid parts (each color is a separate part) as well as the voxels which lie within the
geometry surface. Given a specific model state, the global SDF for a point in the global frame is found by taking the minimal SDF at that
point over all overlapping piecewise SDF functions. (b),(d), and (f) show a planar slice through the models with the isocontours of the SDF
superimposed on the plane. (g),(i), and (k) show the colors representing the rigid parts from which the SDF values were generated for each
pixel on the plane, and (h),(j), and (l) again show the isocontours of the SDF, with the zero level set shown in bold.

transformation from frame i to any other frame j is then
defined recursively using:

Tj,i(θ) = Tj,parent(i)(θ)Tparent(i),i(θ) , (1)

such that the transform between any two frames is given
by composing the transforms in a chain indexed using the
parent() function. Note that we assume a tree structure such
that there is a unique path between any two frames.

Rigidly attached to each frame may also be some geometry.
Geometry attached to frame k is defined implicitly by a
signed distance function SDFk(x), which takes on negative
values inside the geometry, positive values outside, and has
a value of zero at the surface interface. While the SDF
is in principle defined for all x ∈ R3, discretizations of
signed distance functions are, in practice, sampled within
finite bounds derived from application-specific requirements
and practical computational and memory restrictions, as seen
in figure (2a). In our experiments, these functions are either
generated from an analytical function describing primitive
shapes such as cylinders and ellipsoids, or by voxelizing closed
polygonal meshes followed by computing a sampled Euclidean
SDF using an efficient 3D distance transform algorithm [9].
Alternatively, the SDF functions could easily be generated
from real-world objects for which no model is readily available
using an efficient 3D scanning method [23] [30] [16].

B. DART Tracker
To track an articulated object over time, DART uses an

extended Kalman filter (EKF) style approach [32], where the
measurement update is achieved via optimization rather than
linearization.

DART Tracker(µt−1,Σt−1, ct, Dt):
1: µ̄t = g(ct, µt−1)

2: Σ̄t = Gt Σt−1 Gt
T

+Rt

3: µt = arg minθ
(
− log(p(Dt|θ)) + (θ − µ̄t)(Σ̄t)−1(θ − µ̄t)

)
4: Σt = H(µt)−1 + Σ̃
5: return µt,Σt

TABLE I: The DART tracking algorithm.

The DART Tracker estimates the mean, µt, and covariance,
Σt, of the posterior over the state θ using the algorithm shown
in Table I. The inputs to the algorithm are the state mean and
covariance from the previous time step along with the most
recent control information, ct, and a depth map, Dt. Depend-
ing on the application, ct may provide information about the
motion of the tracked object, e.g. via a robot manipulator’s
internal sensors. Just like in the standard EKF, the predictive
mean, µ̄t, and covariance, Σ̄t, are computed via linearization
of a motion model, g(ct, µt−1), where Gt and Rt are the
Jacobian and the additive noise covariance, respectively. While
a well-designed motion model can significantly improve the
performance of a tracker, object-specific motion models are
not the focus of this paper and we employ a constant position
model in our current implementation.

The crucial component of DART Tracker is the correction
of the estimate based on the observed depth map: Rather
than computing the Kalman gain to update the state estimate,
the algorithm performs an optimization that determines the
object state that minimizes the negative log likelihood of the
observed depth map, while directly incorporating the predicted



mean and covariance via a squared penalty term (Step 3). The
optimization also provides the covariance of the estimate via
the inverse Hessian matrix H(µt)−1 computed at the solution.
However, the Hessian approximation tends to underestimate
the uncertainty, since it assumes independence between all
pixels in a depth map and does not consider possible errors
in the data association. To deal with this problem in practice,
our current algorithm adds a constant noise term, Σ̃, as shown
in Step 4.

In the remainder of this section, we will describe how to
efficiently perform the optimization required for Steps 3 and
4 of the DART Tracker. We will focus on minimizing the
negative of the measurement log likelihood p(Dt|θ). Given
this result, incorporation of the predictive mean and covariance
is then achieved simply by factoring the quadratic term (θ −
µ̄t)(Σ̄t)−1(θ − µ̄t) into the optimization.

C. Measurement Model and Data Association

We work with an input device capable of producing a depth
map D(u), which defines for each pixel u = (u, v) ∈ Ω a
depth value d ∈ R, where Ω ⊂ R2 is the image plane. For
each pixel u in an observed depth map, we back-project the
value to its corresponding camera frame point xu ∈ R3:

xu = D (u)K−1 (u, v, 1)
>
, (2)

where K defines the depth camera intrinsic calibration matrix
with known focal length and principle point parameters.

Specifically, our measurement model assumes that depth
frames are generated from some distribution p(D|θ;M),
where M is the given geometry and kinematic structure of
our model, θ ∈ RN is the vector describing some particular
pose of the model, and N is the number of degrees of freedom
in the model. For the remainder of this section we will omit
M for clarity, as the model is assumed to be constant.

We make the assumption that the probability of generating
the depth value at each pixel u of the depth map is independent
of the value at all other pixels given the pose vector, allowing
us to express the likelihood as follows:

p(D|θ) =
∏
u∈Ω

p (D(u)|θ) . (3)

In theory, our depth observation at each pixel is the true
depth D̂ (u) along the pixel ray, corrupted by Gaussian noise.
This defines the per-pixel depth measurement likelihood as

p(D(u)|D̂(u)) ∝ exp(−(e(u))2/σ2) , (4)

where e(u) = D(u)− D̂(u) is the projective signed distance
error between the noisy observation and true surface point.
In practice, we treat observed points as if they are generated
by the exterior surface of the model with a Gaussian noise
distribution in three dimensions rather than one dimensional
noise in depth. Instead of the projective error described above,
with this simplification our error is found simply by looking
up the back-projected point at pixel u in the model signed
distance function, SDFmod (x; θ) : R3 7→ R, which defines
for all of R3 the distance to the surface of the model when

articulated according to pose parameters θ. We replace the
projective signed distance error e(u) with the true signed
distance error and the observation likelihood for the articulated
model becomes:

p(D|θ) ∝
∏
u∈Ω

exp(−SDFmod (xu; θ)
2
/σ2)) . (5)

The MLE estimate of θ is then given by minimizing the
negative log of (5):

θ̂ = arg min
θ

∑
u∈Ω

||SDFmod (xu; θ) ||2 . (6)

The observation model introduced here is the articulated
body counterpart to the rigid body tracking approach intro-
duced in [10]. Fitzgibbon originally demonstrated the effi-
ciency with which a non-linear gradient descent style opti-
mization could be used to solve a rigid body tracking version
of (6). The resulting tracker replaced the need in traditional
ICP and its variants to define an explicit data association step
between the observed and model surfaces, instead utilizing
the implicit data association obtained through a precomputed
distance transform of the model as described above.

While only a single precomputed SDF suffices for rigid
body tracking, the transition to the articulated model case
results in a continuous space of signed distance functions,
as a function of the state. This means that the global func-
tion SDFmod (x; θ) can no longer be strictly precomputed.
Recomputing a full global SDF at every iteration can be
computationally expensive due to the numbers of articulated
geometries in use.

Instead, we solve this problem by approximating the global
signed distance function, SDFmod (x; θ), by precomputing
local signed distance functions, SDFk, for each frame of
reference k to which geometry is rigidly attached. We can then
compute a signed distance value in the global frame by a com-
position of these local functions discussed below. In Figure
(2) we illustrate a selection of global SDF compositions. For
each model with a given state estimate, the labelled articulated
parts are shown with a 2D slice through the resulting 3D SDF
together with the associated closest part for each point in that
plane of the volume.

Given a global point xu, defined in the camera frame of
reference c, we obtain the associated frame k∗ closest to xu

by iterating over the local SDF values:

k∗ = arg min
k∈M

abs
(

SDFk(Tk,c(θ)xu)
)

(7)

resulting in the piecewise-defined signed distance function as:

e(θ,u) = min
k∈M

abs
(

SDFk(Tk,c(θ)xu)
)
. (8)

Figures (3a) - (3e) illustrate the data association, SDF error,
and gradients induced by the current observation in the com-
posite model SDF.

Inserting (8) into (6), we arrive at the approximated articu-
lated tracking energy,

θ̂ = arg min
θ

∑
u∈Ω

e(θ,u)2 . (9)



(a) Observed point cloud (b) Model SDF planar
slice

(c) Observed association (d) Observed point errors (e) Observed point
normals

(f) Predicted point cloud (g) Observation SDF
planar slice

(h) Prediction association (i) Predicted point errors (j) Predicted point
normals

Fig. 3: (a) and (f) show the observed and predicted point clouds for a given depth frame, respectively, overlaid with the model skeleton. (b)
shows a planar slice of the model SDF, and (g) shows a slice of the observation SDF on the same plane (black indicates the zero level set).
Each observed point in (a) is looked up in the model SDF (b) to determine the rigid part data association (c), error (d), and SDF gradients
(e) which are used to compute derivatives of the energy function. Likewise, each predicted point in (f) is looked up in the observation SDF
(g) to determine rigid part data association (h), error (i), and gradients (j).

D. Optimization

Given our energy function and some initial guess for θ, we
perform a second order Taylor series expansion of (9) and
apply the Gauss-Newton approximation to the Hessian term
leading to the construction of the standard normal equations:

∆θ = −
∑
u∈Ω

(
J(u, θ)>J(u, θ)

)−1
e(u, θ)J(u, θ) , (10)

where J(u, θ) = ∂
∂∆θ e(u, θ⊕∆θ), and ⊕ defines the operator

that composes the parameter update vector ∆θ, obtained by
solving the normal equations. The updated state is therefore:

θ ← θ ⊕∆θ . (11)

We have used the composition operator rather than a simple
addition so that we can handle non-linearities, as will soon
become clear.

We will now discuss the computation of the Jacobian terms.
In each iteration, we compute the implicit data association
k∗(u) and error e(u, θ) as given by equations (7) and (8).
The computation of J(u, θ) breaks down nicely via the chain
rule:

∂

∂∆θ
SDFk

∗
(Tk∗,c(θ ⊕∆θ)xu) =

∇SDFk
∗
(Tk∗,c(θ)xu)

∂

∂∆θ
Tk∗,c(θ ⊕∆θ)xu ,

(12)

where we simply need to compute a 3 × N matrix which
describes the motion of point xu in R3 in the frame of
reference of k∗ caused by incremental pose update ∆θ, then
compute the dot product with the local SDF gradient at the
current point location to get the 1×N Jacobian contribution
from pixel u.

Given our model parameterization, the transform from the
global frame c to k∗ follows some chain of the form Tk∗,c =
Tk∗,parent(k∗)...T0,c. By convention the first 6 parameters

describe the 6 degrees of freedom of the global transformation
T0,c. These are parameterized using the Lie algebra se3, which
has been shown to be an effective representation for gradient-
based visual tracking techniques [8, 7]. This parameterization
results in a matrix of the following form:

∂

∂∆θ
Tk∗,c(θ ⊕∆θ)x = 1 0 0 0 x3 −x2

0 1 0 −x3 0 x1
∂x
∂∆θ7

· · · ∂x
∂∆θN

0 0 1 x2 −x1 0


(13)

where the first 3×6 block is the linearization of SE3 around the
identity transform (because we are solving for an incremental
update in (10), and the remainder of the matrix describes the
motion with respect to individual joint parameters. To compute
∂

∂∆θi
Tk∗,cxu for the remaining columns, we apply the product

rule and, because each element of the pose vector can affect
at most one transform, we get at most one nonzero term of
the form:

∂

∂∆θi
Tk∗,cxu = Tk∗,parent(j)

(
∂

∂∆θi
Tparent(j),j

)
Tj,cxu

(14)
where j is the frame of reference whose transformation
(relative to its parent) depends on θi. If degree of freedom i is
a rotational joint with some axis z in the frame of reference
parent(j), then this becomes:

∂

∂∆θi
Tk∗,cxu = Tk∗,parent(j)

(
z× Tparent(j),cxu

)
(15)

where Tk∗,parent(j) will apply only the rotational component
of the transform from parent(j) to k∗, as the result of the
cross product will be homogenized as a vector. If i is instead
a prismatic joint along some axis z, also in the frame of



reference of parent(j), then we simply have:
∂

∂∆θi
Tk∗,cxu = Tk∗,parent(j)z (16)

where, again, only the rotational component of Tk∗,parent(j)
will be applied to vector z. We note that the above two
situations only apply when the position of frame k∗ depends
on parameter θi, which is to say that θi affects some transform
between frame k∗ and the root; if, on the other hand, θi appears
below k∗ or in another branch of the kinematic tree, then
column i will be the zero vector.

Once we have computed the incremental update we must
perform the composition of equation (11). As stated previ-
ously, θ1:6 describes the global 6DOF transformation between
the camera and the model via the exponential map from se3

to SE3. Given that we’ve solved for a relative transformation
about our current estimate, we update this parameter block by
composing the transformations and taking the log map back to
se3. The composition of the remainder of the parameter vector
can be done with simple vector addition:

θ7:N ← θ7:N + ∆θ7:N . (17)

Crucially, our dense, fully-articulated model tracking algo-
rithm described here trivially parallelizes onto modern GPGPU
hardware.

E. Free Space Constraints and the Observation SDF
Traditional ICP-based approaches neglect some information

available in depth observations; namely, each pixel in a depth
map provides information not only about where surfaces exist
in the world, but also where there are none. Any (non-
corrupted) observation of a nonzero depth indicates that there
is nothing between that observed point and the camera, up to
some noise threshold and barring sensor error. The usefulness
of this ‘negative’ information was noted by Ganapathi et al.
[12], who used constraint projection to avoid gross free space
violation.

We compute a signed distance function representation of
each observation, SDFobs (x;D), and add a simple comple-
mentary term to the model SDF energy described in the

Fig. 4: Stills from human body tracking, demonstrating anecdotally
the benefits of using free space information. Above, the asymmetric
formulation loses track of the occluded arm, as indicated by the skele-
ton protruding into free space (grossly mispredicted joints are circled
in red). Below, the symmetric formulation maintains a reasonable
estimate through occlusion using negative information and remains
in the basin of convergence when the arm reappears in the depth
map. This figure is best viewed digitally.

previous section, which we call the observation SDF term.
We are then able to take negative information into account
directly in the optimization, rather than relying on constraint
projection. The result is a nicely symmetric objective function,
where observed points incur an error in the predicted model
SDF, and predicted points incur an error in the observation
SDF. A model surface which is predicted to lie in front of
or to the side of the observation will induce an error in this
complementary term which can be reduced by moving the
surface out of known free space. In addition to the elegant
symmetry, we find the addition results in superior tracking
robustness, as can be seen in figure (4).

Specifically, we first instantiate a volume of fixed size such
that it entirely encloses our model in the current frame. We
compute the pixel on which each voxel projects and instantiate
its value to zero if it has depth greater than the observation,
and to a large positive value otherwise. We then compute the
3D distance transform to obtain SDFobs (x;D). An illustration
of the observation SDF and resulting error term is given in
figures (3f) - (3j).

We generate in each iteration predicted points x̃u(θ) using a
standard OpenGL rendering pipeline and a shader which also
produces a map of data association labels K̃ providing for each
predicted point the rigid body from which it was generated.
Then, we can augment our probability distribution in equation
(3):

p(D|θ) =
∏
u∈Ω

p(D(u)|θ)p(x̃u(θ)|D) , (18)

and then define the likelihood function for the predicted vertex
maps as:

p(x̃u(θ)|D) ∝ exp(−SDFobs (x̃u(θ);D)
2
) . (19)

Finally, we arrive at a new energy minimization of the form:

θ̂ = arg min
θ

∑
u∈Ω

SDFmod (xu; θ)
2

+ λ
∑
u∈Ω

SDFobs (x̃u(θ);D)
2

(20)

which expresses both the positive and negative information
available in the observation, and balances the two terms.
The balancing factor λ has a probabilistic interpretation, in
that it represents the ratio of the variance between the two
measurement models, and given that the variance on each term
is in units of distance in R3, it has a geometric interpretation
as well. Note that the cost of computing SDFobs (x;D) is
independent of the number of degrees of freedom and must be
done only once per frame. The error induced in the observation
by the current model rendering is computed by direct tri-linear
interpolation of the SDF, as with the model SDF. For the
derivatives, we note that for each predicted point x̃u there
is some point x̃′u in frame of reference k̃ such that:

x̃u(θ) = Tc,k̃(θ)x̃′u . (21)

We thus compute x̃′u for each point in the predicted point cloud
and compute J(u, θ) = ∂

∂∆θSDFobs

(
Tc,k̃(θ ⊕∆θ)x̃′u;D

)
,

which is done exactly as in equations (12) and (13), excepting
that the transform is inverted.



Subject 1 2 3 4 5 6
FORTH 35.4 19.8 27.3 26.3 16.6 46.2

ICP-PSO 9.3 24.1 14.4 13.4 11.0 20.0
DART asym. 32.0 34.4 47.4 21.3 19.1 35.6
DART symm. 14.1 12.0 24.7 14.4 12.6 26.8

TABLE II: Comparison with state-of-the-art hand tracking ap-
proaches on the dataset of [26]. Results are the average distance
between predicted and ground truth markers for the wrist and five
fingers, in mm. FORTH is the approach from Oikonomidis et al.
[25]. Results for both FORTH and ICP-PSO are as reported and
implemented by Qian et al. [26].

IV. EXPERIMENTS

As the key focus of DART is the ability to generalize across
a wide variety of models, we evaluate its performance in
multiple domains. We give quantitative results for markerless
tracking from depth datasets in the human body and human
hand domains, and demonstrate a robotics application that
relies on accurate tracking of a robot manipulator. There are
some variations in parameter values to account for differences
in model size and sensor types, but the code used to track all
models is the same. Results are given for both the symmetric
and asymmetric formulations of DART, which refer to the
presence or absence of the free space constraints of section
III-E, respectively. All results were computed at a frame rate
at or above 30 FPS on an Nvidia GeForce GTX 680 with
minimal CPU requirements.

A. Human Body Tracking

We demonstrate the performance of DART on the EVAL
dataset presented by Ganapathi et al. [12], and compare our
results with the results from that work as well as the very
recent results of Ye and Yang [35]. The human body models
used are based on the meshes of [15], and had 48 degrees of
freedom. The dataset consists of a sequence of point clouds
with ground truth joint markers derived from a motion capture
system. The error metric used is the percentage of joints
predicted within 10cm of the given ground truth across all 24
sequences in the dataset. The results presented in figure (6)
show that DART is competitive with state-of-the-art human
body tracking approaches. Here, we would like to highlight
that while some of the remaining error is due to inaccurate
pose estimation, a significant portion is also due to noise in
the ground truth markers themselves.

We are able to improve on the results of Ganapathi et al.,
even without using negative information, most likely because
our precomputation of the model SDF allows us to use
complex mesh models rather than being restricted to geometric
primitive approximations. The gap between DART and the
work of Ye and Yang on this dataset is likely explained by their
further model improvements achieved by automated shape
estimation, as well as their use of a smooth mesh deformation
model as opposed to the segmentation of meshes into rigid
parts required by DART.

B. Human Hand Tracking

We also demonstrate results on the recently published
dataset of Qian et al. [26], comparing our work against their

(a) With visual feedback

(b) Without visual feedback

Fig. 5: Visual servoing results. In (a), the arm position is continu-
ously estimated, allowing for a successful grasp. In (b), the position
of the ball is estimated initially, but no visual feedback is used
during motion. Though Baxter’s end effector is reported to be at
the initially-estimated ball position (shown in blue overlay), it is in
fact significantly off, resulting in a grasping failure.

ICP-PSO algorithm as well as the approach of Oikonomidis
et al. [25]. The human hand model is a collection of manually-
defined ellipsoids, cylinders, and spheres, and has 26 degrees
of freedom. The results are shown in Table II. We compare
only against the reported results that don’t make use of
the hand-designed finger detector, as this is hand-specific.
Again, DART is competitive with state-of-the-art approaches.
Furthermore, this dataset clearly demonstrates the benefit of
free space information incorporated via the observation SDF
in the symmetric version of DART. Here, the use of such
information is very important for accurately tracking a model
that moves as quickly and with as much self-occlusion as the
human hand. It is unclear how well the work of Ye and Yang,
which does not take negative information into account at all,
would perform in this domain.

The gap between ICP-PSO and DART might be explained
by the fact that the particle-based nature of PSO makes it more
able to escape the sort of local minima that DART can fall
into. Furthermore, the dataset was manually labelled using the
model applied in ICP-PSO, which may have introduced a bias
in the given marker positions. It is also unclear how well the
ICP-PSO approach would generalize to human body tracking,
which would require many more than 48 spheres and would
likely degrade performance below real time. It is also highly
unlikely that a sphere model could be used to track a robot
with the level of accuracy achievable with our mesh model,
as illustrated in the following experiment.

C. Visual Servoing

The datasets currently available for markerless tracking
from a single RGB-D camera do not give a full picture
of the level of accuracy achievable with a dense data term
and a model of essentially arbitrary precision. In order to
demonstrate its applicability to a practical robotics problem,
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Fig. 6: Comparison with state-of-the-art human body tracking
approaches on the EVAL dataset of [12]. Results given are the
percentage of joints which are predicted within 10cm of the given
ground truth positions.

we implemented a very simple closed-loop controller for
visual servoing with the Rethink Robotics Baxter robot. We
hung a tennis ball at 10 different locations within the reach
of Baxter’s arms, and the task was simply to grab the ball.
First, we estimated the location of ball relative to Baxter by
manually initializing the position of a Baxter and sphere model
and refining the estimates with DART. We then used inverse
kinematics to find joint angles required to grab a ball at the
resulting relative offset and moved the arm accordingly. As
a result of some combination of errors in the joint angles
reported by Baxter (although the arm had just been calibrated)
and depth skew in the reported depth values, the manipulator
frequently went to an incorrect location and only succeeded
in grasping the ball in 3 out of the 10 positions.

Next, we used DART to provide visual feedback to guide
the manipulator towards the target. At fixed time intervals,
the offset between the end effector position and the observed
ball tracked by DART was used to refine the estimate of the
ball position in Baxter’s frame of reference and to update
the inverse kinematics solution. When using real-time visual
feedback, the ball was successfully grasped in all 10 locations.
Figure (5) shows stills of an attempted grasp with and without
visual feedback.

V. LIMITATIONS AND POSSIBLE EXTENSIONS

DART currently employs a very simple approach to ini-
tialize the tracker and recover from failure. A more effective
approach to these problems might be achieved by borrowing
ideas from discriminative tracking techniques [29, 31, 17],
where one would first learn to detect certain parts or features of
an object, then use the detection to initialize the pose estimate
within the basin of convergence.

DART also does not attempt to model physical constraints
such as contacts. While our objective function does incen-
tivize non-intersection, it does not explicitly penalize self-
intersection of the model. This might be problematic for
tracking actuated bodies interacting or manipulating other
tracked objects, but could be solved by adding such constraints
to the system, similar to the approach taken by Schulman et al.
[28] for deformable objects.

While we conservatively ignored color information so as to
be insensitive to lighting conditions, future work could add this
information to strengthen tracking under some assumptions
about the lighting. This could be useful for rejecting incorrect
data association or the segmentation of background pixels
lacking depth information to enhance free space constraints.

Since our focus has been on a maximally general and
efficient framework, the motion model currently implemented
in DART is a rather simple constant position model. How-
ever, DART could readily incorporate joint encoder infor-
mation when tracking robots or better motion models gen-
erated by physics-based engines such as Bullet [2] or Mu-
JoCo [33]. Instead of the current Kalman filter style model
of the DART Tracker, one could further increase robustness
via a switching motion model implemented through Rao-
Blackwellized particle filtering [32, 18], where multiple pos-
sible motions are sampled and an optimization is run for
each particle. Obviously, one would have to carefully trade
off the increase in computational cost against the increase
in robustness. Finally, learning synergistic motion models
that enable reasoning about redundancy in the state spaces
of interacting objects, hands and body parts, could improve
tracking performance of both the observed and occluded parts
of the articulated models.

VI. CONCLUSION

This paper introduced DART, a general framework for track-
ing articulated models with formally defined kinematic and
geometric structure. DART represents objects via a symmetric
version of signed distance functions, extended to articulated
objects. Our framework uses a local gradient based optimiza-
tion to find the pose of the model which best explains the
data points observed in a depth camera frame along with a
prior based on previous data. Because of its representation, the
energy function underlying DART is trivially parallelizable,
and is optimized on a GPU, which allows us to use dense
data to achieve accurate tracking results in real-time.

We demonstrate successful real-time tracking in scenarios
with as many as 48 degrees of freedom. Each specific appli-
cation of DART only requires the specification of a model:
there are no underlying algorithmic changes required for the
different objects. Though DART does not provide estimates
that are demonstrably better than all existing methods in their
specialized domains, our work is novel in its demonstration of
competitive results across multiple domains.

We believe that the robotics community can greatly benefit
from a general tool such as DART, enabling researchers to
take advantage of accurate fine grained information about
the state of articulated objects, and at real-time update rates.
As a general base to articulated model tracking, there are
a multitude of ways in which DART could be extended
for any particular tracking scenario. Promising directions for
future work include improved motion models, incorporation
of physics-based reasoning, discriminative techniques for (re)-
initialization of the tracker, and automatic learning of both
articulated model geometry and motion constraints.
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